Human Emotion Classification based on EEG Signals Using Recurrent Neural Network And KNN

Author:

Shashank Joshi ,Falak Joshi

Abstract

In human contact, emotion is very crucial. Attributes like words, voice intonation, facial expressions, and kinesics can all be used to portray one's feelings. However, brain-computer interface (BCI) devices have not yet reached the level required for emotion interpretation. With the rapid development of machine learning algorithms, dry electrode techniques, and different real-world applications of the brain-computer interface for normal individuals, emotion categorization from EEG data has recently gotten a lot of attention. Electroencephalogram (EEG) signals are a critical resource for these systems. The primary benefit of employing EEG signals is that they reflect true emotion and are easily resolved by computer systems. In this work, EEG signals associated with good, neutral, and negative emotions were identified using channel selection preprocessing. However, researchers had a limited grasp of the specifics of the link between various emotional states until now. To identify EEG signals, we used discrete wavelet transform and machine learning techniques such as recurrent neural network (RNN) and k-nearest neighbor (kNN) algorithm. Initially, the classifier methods were utilized for channel selection. As a result, final feature vectors were created by integrating the features of EEG segments from these channels. Using the RNN and kNN algorithms, the final feature vectors with connected positive, neutral, and negative emotions were categorized independently. The classification performance of both techniques is computed and compared. Using RNN and kNN, the average overall accuracies were 94.844 % and 93.438 %, respectively.

Publisher

Perpetual Innovation Media Pvt. Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emotion Classification of subjects while watching video, using Recurrent Neural Network and Tensorflow;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3