Using Marchenko–Pastur SVD and Linear MMSE Estimation for Reducing Image Noise

Author:

Swati Rane ,Lakshmappa K. Ragha ,Siddalingappagouda Biradar ,Vaibhav R. Pandit

Abstract

The degradation in visual quality of images is often seen due to a variety of noise added inevitably at the time of image acquisition. Its restoration has thus become a fundamental and significant problem in image processing. Many attempts are made in recent past to efficiently denoise images. But, the best possible solution to this problem is still an open research problem. This paper validates the effectiveness of one such popular image denoising approach, where an adaptive image patch clustering is followed by the two step denoising algorithm in Principal Component Analysis (PCA) domain. First step uses Marchenko–Pastur law based hard thresholding of singular values in the singular value decomposition (SVD) domain and the second step removes remaining noise in PCA domain using Linear Minimum Mean-Squared-Error (LMMSE), a soft thresholding. The experimentation is conducted on gray-scale images corrupted by four different noise types namely speckle, salt & pepper, Gaussian, and Poisson. The efficiency of image denoising is quantified in terms of popular image quality metrics peak signal-to-noise ratio (PSNR), structural similarity (SSIM), feature similarity (FSIM), and the denoising time. The comprehensive performance analysis of the denoising approach against the four noise models underlies its suitability to various applications. This certainly gives the new researchers a direction for selection of image denoising method.

Publisher

Perpetual Innovation Media Pvt. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3