Change Detection Analysis of Land Cover Features using Support Vector Machine Classifier

Author:

Saurabh Kumar ,Shwetank

Abstract

Remote sensing (RS) is crucial for geographical change studies such as vegetation, forestry, agriculture, urbanization, and other land use/land cover (LU/LC) applications. The RS satellite imagery provides crucial geospatial information for observation and analysis of the entire earth's surface. In the proposed study, Multitemporal and multispectral Landsat satellite imagery is used to feature extraction of LU/LC of the Haridwar region. The preprocessing of used imagery is essential for accurately classify the land cover features using image preprocessing methods (geometric correction, atmospheric correction, and image transform). It helps to classify and change detection of land cover features accurately. After preprocessing of imagery, land cover features are divided into seven feature classes using the region of interest (ROI) tool with google earth image and topographic map. The Support vector machine (SVM) is a supervised learning method used to classify the land cover features of the study area. SVM classifier accurately classifies the imagery of the different years 2017, 2010, 2003, and 1996 with 90.00%, 82.75%, 86.37%, and 83.38% accuracy. The post-classification method is used to detect changes in land cover features. From 1996 to 2017, orchards and vegetation are rapidly decreased by 13,698.36 ha and 1,638.81 ha due to unplanned development in urban and industrial areas of the Haridwar region. The resultant LU/LC change information is important for monitoring and analyzing land cover changes of the study area.    

Publisher

Perpetual Innovation Media Pvt. Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Multispectral Post-Classification Change Detection Technique;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3