Design and Analysis of Multipliers for DNN application using approximate 4:2 Compressors

Author:

Anjankar Shubham,Hemant Gillurkar ,Joshi Pankaj,Dwaramwar Pravin

Abstract

The demand for Deep Learning applications in resource constrained devices is booming in recent years. Theuse of Deep Neural Network (DNN) is the leading method in these applications which has error resilient nature.This allows the use of Approximate Computing for efficient computation to leverage efficiency accuracy tradeoff by replacing Approximate Multiplier in place of exact multipliers. In this paper we proposed ApproximateCompressors and compared them in different cases of 8 bit integer dadda multipliers in terms of the Error metricsand accuracy in real life object classification applications. The approximate multipliers are designed using differentcompressors and used to perform multiplication in ResNet. We have proposed two approximate compressorsdesigns Design 1 and Design 2.The proposed 4:2 compressors design shows the more correct outputs and lessWorst Case Relative Error (WCRE) in the range of 2-16. Our proposed 4:2 compressor Design1 is utilized in themodified Reduction circuitry of dadda multiplier and shows the accuracy of 81.6 % for DNN application

Publisher

Perpetual Innovation Media Pvt. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3