Novel Deep Convolutional Neural Network based Classification of Arrhythmia

Author:

Priyanka Rathee ,Mahesh Shirsath ,Lalit Kumar Awasthi ,Naveen Chauhan

Abstract

Holter monitors are used to record Electrocardiogram (ECG) data which is extremely hard to analyze manually. Convolutional Neural Network (CNN) are known to be efficient for classification of image data. Hence, in this study, we are using Deep Convolutional Neural Network to classify the ECG data into various types of Arrhythmias. Denoising, segmentation and data augmentation techniques are used for pre-processing of the data. The proposed model uses the MIT-BIH Arrhythmia Dataset for training and evaluation purpose this dataset has much imbalance which has been removed using data augmentation techniques. The proposed approach shows an overall accuracy 99.67% along with 99.68% precision and 99.66% recall. Further, we have also compared the state-of-the-art models like 2D CNN, genetic ensemble of classifiers, Long Short-Term Memory (LSTM) Networks, etc results with proposed model. And the introduced approach is outperforming when compared to these models.

Publisher

Perpetual Innovation Media Pvt. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3