Design of an Ensemble Segmentation, Feature Processing & Classification model for identification of Cotton Fungal diseases

Author:

Sandhya N. Dhage ,Vijay Kumar Garg

Abstract

Cotton fungal diseases include rust, alternaria leaf spot, fusarium wilt, grew mildew, and root rots. Identification of these diseases requires design of efficient fungi segmentation, feature representation & classification models. Existing methods that perform these tasks, are highly complex, and require disease-specific segmentation techniques, which limits their scalability levels. Moreover, low-complexity models are generally observed to showcase low accuracy levels, which restricts their applicability for real-time use cases. To overcome these issues, proposed design focused on a novel ensemble segmentation, feature processing & classification model for identification of cotton fungi diseases. The proposed model initially uses a combination of Fuzzy C Means (FCM), Enhanced FCM, KFCM, and saliency maps in order to extract Regions of Interest (RoIs). These RoIs are post-processed via a light-weight colour-feature based disease category identification layer, which assists in selecting the segmented image sets. These image sets are processed via an ensemble feature representation layer, which combines Colour Maps, Edge Maps, Gabor Maps and Convolutional feature sets. Due to evaluation of multiple feature sets, the model is able to improve classification performance for multiple disease types. Extracted features are classified via use of an ensemble classification model that combines Naïve Bayes (NB), Support Vector Machines (SVMs), Logistic Regression (LR), and Multilayer Perceptron (MLP) based classifiers. Due to this combination of segmentation, feature representation & classification models, the proposed Model is capable of improving classification accuracy by 5.9%, precision by 4.5%, recall by 3.8%, and delay by 8.5% when compared with state-of-the-art models, which makes it useful for real-time disease detection of crops.

Publisher

Perpetual Innovation Media Pvt. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3