Author:
Katsikis Vasilios N.,Mourtas Spyridon D.
Abstract
The minimization of the costs related to portfolio insurance is a very important investment strategy. In this article, by adding the transaction costs to the classical minimum cost portfolio insurance (MCPI) problem, we define and study the MCPI under transaction costs (MCPITC) problem as a nonlinear programming (NLP) problem. In this way, the MCPI problem becomes more realistic. Since such NLP problems are commonly solved by heuristics, we use the Beetle Antennae Search (BAS) algorithm to provide a solution to the MCPITC problem. Numerical experiments and computer simulations in real-world data sets confirm that our approach is an excellent alternative to other evolutionary computation algorithms.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献