Affiliation:
1. FSBI FIC "Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences"
Abstract
Conodont elements are used as a geochemical archive of seawater. Some compositional features of conodont elements reflect conodont ecology and trophic structure of Palaeozoic pelagic ecosystems. However, the screening of conodont elements prior to geochemical and/or isotopic studies is a real problem. This study evaluates SEM cathodoluminescence (SEM-CL), which is very sensitive to the REE and Mn content of apatite, for the detection of traces of secondary transformation in the composition of conodont bioapatite. The SEM-CL of conodont elements is similar to that of unaltered shark teeth (blue-violet), but differs significantly from that of fossil vertebrate teeth (orange-red). Thermal alteration has little effect on the SEM-CL. Elements with a CAI of 1—1.5 show a redder and more intense CL than elements with a CAI of 5. In the case of corrosion of the conodont element surface in carbonate host rocks, the CL of the outer parts of the conodont element become reddish due to invasion of the carbonate material. Conodont elements from the clay host rock show deep purple SEM-CL. Thus, SEM-CL allows detection of the results of secondary processes in conodont mineralised tissues, including enrichment by REE and/or Mn, corrosion and contamination by carbonate material. This method can be used to screen significantly altered samples prior to chemical and isotopic analyses.
Reference24 articles.
1. Balter V., Martin J. E., Tacail T., Suan G., Renaud S., Girard C. Calcium stable isotopes place Devonian conodonts as first level consumers // Geochemical Perspectives. 2019. 10. P. 36—39. DOI: 10.7185/geochemlet.1912, Balter V., Martin J. E., Tacail T., Suan G., Renaud S., Girard C. Calcium stable isotopes place Devonian conodonts as first level consumers // Geochemical Perspectives. 2019. 10. P. 36—39. DOI: 10.7185/geochemlet.1912
2. Barnett W. A., Wise M. L. H., & Jones E. C. Cathodoluminescence of biological molecules, macromolecules and cells // Journal of Microscopy. 1975. 105(3). P. 299—303. DOI: 10.1111/j.1365-2818.1975.tb04063.x, Barnett W. A., Wise M. L. H., & Jones E. C. Cathodoluminescence of biological molecules, macromolecules and cells // Journal of Microscopy. 1975. 105(3). P. 299—303. DOI: 10.1111/j.1365-2818.1975.tb04063.x
3. Götze J. Application of Cathodoluminescence Microscopy and Spectroscopy in Geosciences // Microscopy and Microanalysis. 2012. 18. P. 1270—1284. DOI: 10.1017/S1431927612001122, Götze J. Application of Cathodoluminescence Microscopy and Spectroscopy in Geosciences // Microscopy and Microanalysis. 2012. 18. P. 1270—1284. DOI: 10.1017/S1431927612001122
4. Griffin J. M., Montañez I. P., Glessner J. J. G., Chen J., Willmes M. Geologic variability of conodont strontium isotopic composition quantified by laser ablation multiple collection inductively coupled plasma mass spectrometry // Palaeogeography, Palaeoclimatology, Palaeoecology. 2021. 568. 110308. DOI: 10.1016/j.palaeo.2021.110308, Griffin J. M., Montañez I. P., Glessner J. J. G., Chen J., Willmes M. Geologic variability of conodont strontium isotopic composition quantified by laser ablation multiple collection inductively coupled plasma mass spectrometry // Palaeogeography, Palaeoclimatology, Palaeoecology. 2021. 568. 110308. DOI: 10.1016/j.palaeo.2021.110308
5. Habermann D., Götze J., Neuser R. & Richter D. K. The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite // Zentralbl. Geol. Paläont. 1997. 1(10—12). P. 1275—1284., Habermann D., Götze J., Neuser R. & Richter D. K. The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite // Zentralbl. Geol. Paläont. 1997. 1(10—12). P. 1275—1284.