Maxwell equations in Lobachevsky space and modeling the medium with reflecting properties

Author:

Kuz'mich A.1,Buryy A.2,Ovsiyuk E.3

Affiliation:

1. A. S. Pushkin Brest State University

2. B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus

3. Mozyr State Pedagogical University named after I.P. Shamyakin

Abstract

Lobachevsky geometry simulates a medium with special constitutive relations Di = ϵ0ϵikEk, Bi = μ0μikHk, where two matrices coincide: ϵik(x) = μik(x). The situation is specified in quasi-Cartesian coordinates (x, y, z) in Lobachevsky space, they are appropriate for modeling a medium nonuniform along the axis z. Exact solutions of the Maxwell equations in complex form of Majorana-Oppenheimer have been constructed. The problem reduces to a second-order differential equation for a certain primary function which can be associated with the one-dimensional Schrödinger problem for a particle in external potential field U(z) = U0e2z. In the frames of the quantum mechanics, Lobachevsky geometry acts as an effective potential barrier with reflection coefficient R = 1; in electrodynamic context, this geometry simulates a medium that effectively acts as an ideal mirror distributed in space. Penetration of the electromagnetic field into the effective medium along the axis z depends on the parameters of an electromagnetic waves ω, k2 1 + k2 2 and the curvature radius ρ of the used Lobachevsky model. The generalized quasi-plane wave solutions f(t, x, y, z) = E + iB and the relevant system of equations are transformed into the real form, which permit us to relate geometry characteristics with expressions for effective tensors of electric and magnetic permittivities.

Publisher

Komi SC UB RAS

Reference13 articles.

1. Gordon, W. Zur Lichtfortpflanzung nach der Relativitätstheorie / W. Gordon // Annalen der Physik. – 1923. – Vol. 72. – P. 421–456., Gordon, W. Zur Lichtfortpflanzung nach der Relativitätstheorie / W. Gordon // Annalen der Physik. – 1923. – Vol. 72. – P. 421–456.

2. Tamm, I. E. Electrodynamics of an anisotropic medium and the special theory of relativity / I. E. Tamm // Zh. R, F, Kh. O, Fiz. dep. – 1924. – Vol. 56, № 2–3. – P. 248–262., Tamm, I. E. Electrodynamics of an anisotropic medium and the special theory of relativity / I. E. Tamm // Zh. R. F.-Kh. O., Fiz. dep. – 1924. – Vol. 56, № 2–3. – P. 248–262.

3. Tamm, I E. Crystal optics in the theory of relativity and its relationship to the geometry of a biquadratic form / I. E. Tamm // Zh. R, F, Kh. O, Fiz. dep. – 1925. – Vol. 57, № 3–4. – P. 209–240., Tamm, I. E. Crystal optics in the theory of relativity and its relationship to the geometry of a biquadratic form / I. E. Tamm // Zh. R. F.-Kh. O., Fiz. dep. – 1925. – Vol. 57, № 3-4. – P. 209–240.

4. Mandelstam, L. I. Elektrodynamik der anisotropen Medien und der speziallen Relativitätstheorie / L. I. Mandelstam, I. E. Tamm // Mathematische Annalen. – 1925. – Vol. 95. – P. 154–160., Mandelstam, L. I. Elektrodynamik der anisotropen Medien und der speziallen Relativitätstheorie / L. I. Mandelstam, I. E. Tamm // Mathematische Annalen. – 1925. – Vol. 95. – P. 154–160.

5. Majorana, E. Scientific Papers. (Unpublished). Deposited at the «Domus Galileana» / E. Majorana. – Pisa, quaderno 2. – P. 101/1; 3, P. 11, 160; 15, P. 16; 17, P. 83, 159., Majorana, E. Scientific Papers. (Unpublished). Deposited at the «Domus Galileana» / E. Majorana. – Pisa, quaderno 2. – P. 101/1; 3, P. 11, 160; 15, P. 16; 17, P. 83, 159.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3