Affiliation:
1. FSBI FIC "Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences"
Abstract
Erosion due to frozen and hygrogenic creep and flooding of the slope with surface waters are the reasons for the landslide revival in residential areas of Vorkuta. We have evaluated the interlink between landslide dynamics, seasonal frost depth and main climatic parameters affecting the above indexes as snow accumulation, mean air temperature of cold year period, number of cold days and amount of liquid precipitation for 2010–2020. Frost depths for technogenic grounds and semi-rocks have been calculated by two methods based: 1 – on the thermal properties of soils and rocks and some climatic parameters, 2 – on the heat conductance of a three-layer medium (snow cover, frozen and thawed soils) and its heat balance. The mean difference between the calculated and some observed frost depths in technogenic grounds is 30 %. The correlation coefficient Kcor was 0.86 and 0.62. According to the Grey correlation analysis, the mean air tem-perature for the cold year period is an important parameter affecting the reference sequence, i.e. landslide dynamics. Cold period length and air temperature best affected the frost depth. Liquid precipitation amount is found to be another significant parameter for both reference sequences.
Reference28 articles.
1. Hugh, A. L. Henry. Climate change and soil freezing dynamics : historical trends and projected changes / A. L. Henry Hugh // Climatic Change. – 2008. – Vol. 87. – P. 421–434. – DOI 10.1007/s10584-007-9322-8., Hugh, A. L. Henry. Climate change and soil freezing dynamics : historical trends and projected changes / A. L. Henry Hugh // Climatic Change. – 2008. – Vol. 87. – P. 421–434. – DOI 10.1007/s10584-007-9322-8.
2. Tian, S. Cyclic behaviour of coarse-grained materials exposed to freeze-thaw cycles : experimental evidence and evolution model / S. Tian, T. Liang, L. Xianzhang, X. Kong, S. Li [et al.] // Cold Regions Science and Technology. – 2019. – Vol. 167. – 167:102815. DOI 10.1016/j.coldregions.2019.102815., Tian, S. Cyclic behaviour of coarse-grained materials exposed to freeze-thaw cycles : experimental evidence and evolution model / S. Tian, T. Liang, L. Xianzhang, X. Kong, S. Li [et al.] // Cold Regions Science and Technology. – 2019. – Vol. 167. – 167:102815. DOI 10.1016/j.coldregions.2019.102815.
3. Шерстюков, А. Б. Корреляция температуры почвогрунтов с температурой воздуха и высотой снежного покрова на территории России / А. Б. Шерстюков // Криосфера Земли. – 2008. – Т. XII, № 1. – С. 79–87., Sherstyukov, A. B. Korrelyatsiya temperatury pochvogruntov s temperaturoy vozdukha i vysotoy snezhnogo pokrova na territorii Rossii [Correlation of soil temperature with air temperature and snow cover depth in Russia] / A. B. Sherstyukov // Kriosfera Zemli [The Earth’s Cryosphere]. – 2008. – Vol. XII. – № 1. – P. 79–87.
4. Stefan, J. Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere / J. Stefan // Annalen der Physik. – 1890. – Vol. 278. – Iss. 2. – 18:965., Stefan, J. Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere / J. Stefan // Annalen der Physik. – 1890. – Vol. 278. – Iss. 2. – 18:965.
5. Волкова, Н. Г. Климатические характеристики промерзания почвы на территории РФ / Н. Г. Волкова // Вестник МГСУ. – 2011. – № 3. – С. 235–241., Volkova, N. G. Klimaticheskiye kharakteristiki promerzaniya zemli na territorii RF [Climatic characteristics of soil freezing on the territory of the Russian Federation] / N. G. Volkova // Vestnik MGSU [Bulletin of the Moscow State University]. – 2011. – № 3. – P. 235–241.