EXPRESSION PATTERN OF BK CHANNELS ON VARIOUS OXIDATIVE STRESS CONDITIONS IN SKELETAL MUSCLE

Author:

COŞKUN Çağıl1,ÇİÇEK Figen Amber2,TOKGÜN Onur3,ÖCAL Işıl2

Affiliation:

1. ÇUKUROVA ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, BİYOFİZİK ANABİLİM DALI

2. CUKUROVA UNIVERSITY, FACULTY OF MEDICINE

3. PAMUKKALE UNIVERSITY, SCHOOL OF MEDICINE

Abstract

BK (large conductance Ca2+-activated potassium) channels are expressed in myocytes though changes in their molecular levels in the presence of oxidative stress is not clear, yet. Excessive production of reactive oxygen species leads to many diseases including periodic paralysis. Therefore, determination the molecular effects of various oxidative stress conditions may reveal the possible mechanism and potential therapeutic effects. In the present study, isolated rat soleus muscle where KCNMA1 genes encoding BK channel protein expressed widely in skeletal muscle, were exposed to cyclopiazonic acid (CPA) and also hydrogen peroxide (H2O2) as oxidative stress inducers. Streptozotocin-induced diabetes mellitus model was also used to demonstrate the effects of the endogenous source of oxidative stress. Moreover, NS1619, a BK channel opener was used whether the activation of the channel re-regulate the channel expression back. After the incubation periods, KCNMA1 gene expression levels of each groups were determined by real-time PCR experiments. While CPA and H2O2 decreased the KCNMA1 expression significantly, its expression did not change in systemic diabetes mellitus condition. However, the transcriptional level significantly decreased in diabetes in the presence of H2O2. On the other hand, KCNMA1 expression was re-regulated back to the control’s level by addition of NS1619 in solely hydrogen peroxide groups. The results demonstrated for the first time that acute oxidative stress, rather than systemic conditions, effects the KCNMA1 gene expression level in skeletal muscle. The study was also showed the effects of NS1619 on the regulation of transcriptional levels of BK channel protein in hydrogen peroxide conditions.

Publisher

INESEG Yayincilik

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3