Dynamic near-seafloor sediment transport in Kaikōura Canyon following a large canyon-flushing event

Author:

Maier Katherine L.1,Nodder Scott D.1,Deppeler Stacy1,Gerring Peter1,Frontin-Rollet Grace1,Hale Rachel2,Twigge Oliver1,Bury Sarah J.1

Affiliation:

1. 1 National Institute of Water and Atmospheric Research Ltd., Te Whanganui-a-Tara Wellington 6021, Aotearoa New Zealand

2. 2 National Institute of Water and Atmospheric Research Ltd., Whakatū Nelson 7010, Aotearoa New Zealand

Abstract

ABSTRACT Submarine canyons are important deep-sea environments and conduits for transferring and accumulating sediment and organic matter and pollutants. Recent advances in observing, sampling, and analyzing modern canyon sediment transport systems illustrate near-seafloor dynamics and highlight the potential roles of submarine canyons in transporting and storing organic carbon, nutrients, and contaminants in the deep sea, with implications for deep-sea ecosystems and global carbon budgets. Kaikōura Canyon, offshore northeastern Te Waipounamu South Island, Aotearoa New Zealand, is a benthic biomass hotspot that experienced an earthquake-triggered, canyon-flushing event in 2016. On return to the canyon in October 2020, benthic landers, with sediment traps at 2 m above the seafloor, were deployed along the canyon axis in ∼ 900–1500 m water depths for a period of three weeks. These instrumented platforms provide a detailed view of near-seafloor sediment and organic-carbon transport between canyon-flushing events, showing that the canyon environment hosts dynamic physical processes and short-term sediment fluxes and transport. Variations in sediment and organic carbon flux down-canyon and over time include small-scale sediment transport events, some of which are interpreted as turbidity currents, occurring on much shorter timescales than earthquake recurrence. We compare Kaikōura Canyon results with other longshore-fed, shelf-incised global submarine canyons and deep-ocean sites, revealing differences and likely multiple controlling factors for near-seafloor sediment flux. This Kaikōura Canyon high-resolution, benthic lander timeseries dataset highlights the complexity of submarine canyons and their role in organic carbon flux to the deep ocean, even under high present-day sea-level conditions. Evolving insights underscore the need for more observational data and samples to further quantify submarine canyon sediment and organic-carbon transport and contribute to global evaluations of deep-sea canyon distributary systems.

Publisher

Society for Sedimentary Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3