Discussion of Laya et al. (2021), Dissolution of ooids in seawater-derived fluids - an example from Lower Permian re-sedimented carbonates, West Texas, USA [Sedimentology 68(6), 2671-2706]

Author:

Granier Bruno R.C.,Kendall Christopher G. St.

Abstract

This discussion reassesses earlier interpretations of calcareous turbidites from the subsurface Spraberry Formation of the Happy Field (Garza County, NW Texas). It is based on routine petrographic analyses with a standard microscope. The succession of diagenetic products in this deep water setting were a little initial cementation by low magnesian calcite (LMC) and then the partial or complete leaching of both aragonite and high magnesian calcite (HMC) allochems facilitated by the presence of a residual primary intergranular porosity. This contradicts Laya et al.'s (2021) claim that cementation left no residual intergranular porosity so further leaching of the ooids would not have been possible. Instead the study made for this discussion with the same thin sections found residual primary intergranular porosity remains as evidenced by some of their photomicrographs. Most thin sections with porous grainstones have 1) collapsed molds that exhibit evidence of little initial cementation and 2) measured permeability values that range from some mD to some tens of mD. Isopachous LMC cements occur in almost all thin sections lining the margins of most intergranular pores. As these cements do not fully fill the pores, there is permeable well-connected residual primary porosity with no significant LMC cement in the secondary moldic porosity. Compaction affects the allochems and, where these are partially leached, intergranular and moldic porosities. Dissolution of aragonite (a major component) and HMC (possibly a minor component) was probably not coeval. The order of paragenetic sequence of this discussion study was: 1) LMC cementation; 2) aragonite leaching facilitated by oxidation of the organic matter in the "biocrystals" of bioclasts and oolitic cortices; 3) compactional brecciation, which was first mechanical, and then chemical causing local collapse of the molds of some of the largest pores. It was governed by cementation initially in a shallow burial diagenetic setting and then leaching whereas chemical compaction marks a slightly deeper burial diagenetic setting. The final event was marked by oil migration into the Happy Field reservoirs, freezing the calcium carbonate diagenesis. The theory of Laya et al. (2021) of the leaching of ooids in directly "seawater-derived fluids" is unsupported by the paragenetic sequence described above.

Publisher

Society for Sedimentary Geology

Subject

Paleontology,Stratigraphy,Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3