Absence of evidence of climate-driven cycles in Carboniferous deposits of Joggins, Nova Scotia, Canada: influence of salt withdrawal tectonics on deposition and pedogenesis

Author:

Letourmy Yohan1,Driese Steven G.1,Sims Justin R.2

Affiliation:

1. Terrestrial Paleoclimatology Research Group, Department of Geosciences, Baylor University, One Bear Place 97354, Waco, Texas 76798-7354, U.S.A.

2. Department of Mathematics and Statistics, The University of Tennessee at Martin, Martin, Tennessee 38238, U.S.A.

Abstract

ABSTRACT During the Late Paleozoic Ice Age, the fault-bounded equatorial Cumberland Basin of Nova Scotia experienced rapid subsidence, accumulating kilometer-thick fluvial sedimentary units derived from two highlands to the northwest and southeast. Major variations are recorded in the paleosols exposed at the Joggins Fossil Cliffs, ranging from oxidized and well-drained paleosols with recognizable vertic features to highly reduced organic-rich paleosols. These different soil lithologies suggest alternating conditions between well-drained floodplain environments and water saturation associated with overall poor soil development. Although halokinetic subsidence of the Cumberland Basin is known to have been operative during deposition of these units, previous research favored glacio-eustatic processes as the primary forcing mechanism of sedimentation. A total of 474 fluvial aggradational cycles were identified within a kilometer-thick interval and show a fluctuating accommodation history with a very abrupt nature. The series of fluvial aggradational cycles was used to develop threshold autoregressive models based on 1) their thickness, 2) their paleosol thickness, 3) their sandstone content, and 4) their paleosol-to-sandstone ratio. For each model, results suggest no evidence of statistically significant cyclicity, contradicting the hypothesis that fluvial sedimentation was mainly driven by glacio-eustatic cyclothems. Additionally, a total of 7 lithologies were recognized through 1,655 beds. Evaluation of 8 spherical semivariograms suggests no evidence for cyclicity in the frequency, order, or distribution of the data based on lithologies, although some covariance was found at distances between 550 and 750 m suggesting similar processes controlling sedimentation in the lower and upper Joggins Formation. The Cumberland Basin is known to have been rapidly subsiding, mainly because of ductile deformation of salt deposits in the deeper basinal units. Our results suggest that Joggins records tectonically induced ponding of a part of the sedimentary basin, allowing more extensive preservation of abundant coal and organic-rich units, as well as still-standing fossil forests exposed along the cliffs. These new results suggest that tectonic subsidence of the Cumberland Basin during the Late Paleozoic Ice Age was a more important driver of fluvial sedimentation than previously thought. This novel application of the TAR methodology provides a mathematical description of the sediment accumulation history of terrestrial basins when applied to conformable sedimentary successions, along with the means of linking paleosol development to climatic processes.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3