Textual heterogeneity in massive sandstones from the Grès d'Annot and Numidian Flysch: Implications for depositional processes

Author:

Patel Urval S.1,Stow Dorrik A.V.2,Gardiner Andy2,Buckman Jim2

Affiliation:

1. Institute of GeoEnergy Engineering, Heriot-Watt University–Malaysia, No. 1 Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia

2. Institute of GeoEnergy Engineering, Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, Scotland, U.K.

Abstract

ABSTRACT Vertical bed scale heterogeneity in six massive sandstone beds is investigated using digital image analysis to determine flow processes. Images parallel to the bedding plane and perpendicular to the apparent grain long-axis orientation were acquired to minimize the uncertainty in the grain-size and fabric, and increase the statistical significance of the data. Hypothesis testing was used to reduce the subjectivity in assigning vertical trends within each bed. Results show that a significant part of the deposit contains statistically significant vertical variation in grain-size and fabric (ρ-values < 0.01). At the bed scale, grain-size can be normally graded or non-graded. However, at shorter length scales, complex grading patterns emerge in the different percentiles of the grain-size distribution, including “oscillating,” “diverging,” and “converging” trends involving the fine- and coarse-tail percentile. Grain fabrics in the bedding-parallel sections show a consistently flow-oblique trend with an average azimuthal deviation of 48°, but becoming increasingly flow aligned at the tops of most beds. The majority of the bedding-perpendicular sections show imbrication angles > 15°, with an average imbrication angle of 78°. Both up- and down-current imbrication polarities are observed in equal abundance. These textural trends are interpreted as a product of active near-bed sedimentation processes that operate in high concentration near-bed layers, which develop at the base of concentrated, turbulent flows, and active fluidization processes that operate during sediment deposition. The short length-scale grain-size trends are likely a reflection of fluctuations in the sediment concentration in these near-bed layers and elutriation, which led to differential grain segregation processes influencing the different grain-size percentiles. The high shear stresses and frequent grain interaction in the near-bed layers, with concomitant fluidization, also generate the oblique bedding-parallel fabric and very high imbrication angles.

Publisher

Society for Sedimentary Geology

Subject

Geology

Reference145 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3