Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity

Author:

Smye Katie1,Banerji D. Amy1,Eastwood Ray1,McDaid Guin1,Hennings Peter1

Affiliation:

1. Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, P.O. Box X, Austin, Texas 78713, U.S.A.

Abstract

ABSTRACT Deepwater siliciclastic deposits of the Delaware Mountain Group (DMG) in the Delaware Basin (DB) are the primary interval for disposal of hydraulic fracturing flowback and produced water from unconventional oil production. Understanding the storage capacity of the DMG is critical in mitigating potential risks such as induced seismicity, water encroachment on production, and drilling hazards, particularly with likely development scenarios and expected volumes of produced water. Here we present a basin-wide geologic characterization of the DMG of the Delaware Basin. The stratigraphic architecture, lithology, and fluid-flow properties including porosity, permeability, amalgamation ratios, and pore volumes, are interpreted and mapped. Lithologies are predicted using gamma-ray and resistivity log responses calibrated to basinal DMG cores and outcrop models. Sandstones exhibit the highest porosity and permeability, and sand depocenters migrate clockwise and prograde basinward throughout Guadalupian time. Permeability is highest at the top of the Cherry and Bell Canyon formations of the DMG, reaching tens to hundreds of millidarcies in porous sandstones. Porous and permeable sandstones are fully amalgamated at the bed scale, but at the channel scale, most sandstones are separated by low-permeability siltstones or carbonates where net sandstone is less than 30%. This geologic characterization can be used to assess the regional storage capacity of the DMG and as input for dynamic fluid-flow models to address pore-pressure evolution, zonal containment, and induced seismicity.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3