Entrapment and transformation of post-bloom radiolarians in cyanobacterial mats as a factor enhancing the formation of black cherts in the Early Silurian sea

Author:

Kremer Barbara1

Affiliation:

1. Institute of Palaeobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland

Abstract

ABSTRACTBlack radiolarian cherts are widespread in the lithological records of the Silurian; however, the processes governing their formation remain unclear. Analyses of Early Silurian cherts of Poland have revealed that they are composed of degraded remains of cyanobacterial mats enclosing variable numbers of dissolved radiolarian tests. In optical and scanning electron microscope (SEM) images, this cyanobacterial necromass, containing entrapped radiolarians and forming massive or laminated cherty deposits, exhibits a complex taphonomic and diagenetic history. These cyanobacterial mats underwent syndepositional to early diagenetic silicification in a peculiar environment which was highly enriched with dissolved silica, due mainly to a massive deposition of opaline tests of post-bloom radiolarians, which settled on mats covering large areas of the sea bottom. It is assumed that precipitation of the chert precursor silica occurred in the highly porous mats and, to a great extent, was governed by the activity of sulfate-reducing bacteria (SRB), which resulted in changes in pH in the mat profile. This process was a key factor governing the dissolution of the radiolarian tests and subsequent reprecipitation of dissolved radiolarian silica in the mats' microenvironment. Photosynthesis carried out by cyanobacteria and the decompositional activity of sulfate-reducing bacteria resulted in: i) a shift of the oxygen gradient below the mat, and ii) strong pH fluctuation within the mat profile. During the first stage of bacterial degradation of the cyanobacterial necromass (SRB I stage), an increase in pH caused dissolution of the radiolarian tests. During the second stage of bacterial degradation (SRB II stage), as the decomposition of organic matter proceeded, a significant amount of organic acid was produced, causing a reduction in pH in the mat interior. Presumably this triggered rapid silica precipitation from the pore waters, which were highly saturated with silica. The availability of radiolarian tests and the rate of their dissolution was therefore a key factor governing the rate of silicification in Early Silurian cyanobacterial mats.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3