Lithological dependence of aragonite preservation in monospecific gastropod deposits of the Miocene Mainz Basin: Implications for the (dia-)genesis of limestone–marl alternations

Author:

Nohl Theresa1,Wetterich Jannick1,Fobbe Nicholas2,Munnecke Axel1

Affiliation:

1. Friedrich-Alexander-University Erlangen–Nuremberg, Geozentrum Nordbayern, Palaeontology, Loewenichstraße 28, 91054 Erlangen, Germany

2. Friedrich-Alexander-University Erlangen–Nuremberg, Geozentrum Nordbayern, Mineralogy, Schloßgarten 5, 91054 Erlangen, Germany

Abstract

ABSTRACTThe origin of limestone–marl alternations (LMA) and their diagenesis is still lively debated. The most disputed question is whether original variations in sediment input control the differentiation of the precursor sediment into limestone and marl, or if a LMA can form without compositional differences in the precursor sediment. The Miocene brackish-water deposits (Rüssingen Formation) from the Mainz–Weisenau quarry in central Germany offer the opportunity to tackle this question. They are developed as a monospecific alternation of planar beds of moderately and poorly lithified sands of aragonitic Hydrobia snails, corresponding to “limestones” and “marls” in LMA, respectively. XRD analyses and the monospecific composition reveal only minor to no changes in sedimentary input and allow comparison of the preservation of Hydrobia in both lithologies. The differential preservation of the aragonitic fossils in lithified and less lithified layers is documented in thin-sections. CaCO3 contents are high throughout the measured section. However, XRD analyses revealed high amounts of aragonite and low amounts of calcite in less lithified beds, and the opposite in lithified beds in which calcite is the main mineral phase. Mg-calcite is abundant in both lithologies. Although the less lithified beds have experienced significant loss of aragonite by dissolution, they still mainly contain aragonite since the precursor sediment contained only aragonitic shells and Mg-calcite crusts. The relative amount of aragonite is higher than in the more lithified beds because the lithified beds imported the dissolved aragonite, which precipitated as calcite cements. This shifted the aragonite–calcite ratio to higher values in the less lithified beds than in the more lithified beds, although it is counterintuitive at first sight. This is supported by thin-section analyses and point counting, revealing moderate to good preservation of Hydrobia or their replacement by calcite spar in lithified beds, but intense dissolution of aragonite in less lithified beds. The aragonite–calcite ratio and the differential preservation of Hydrobia fit the model of differential diagenesis in “classical” LMAs, which assumes early diagenetic aragonite dissolution in marls and reprecipitation as calcite cement in limestones. It is concluded that the studied succession—although an endmember of LMA—was differentiated into lithified and unlithified beds by incomplete differential diagenesis while minor primary differences are not reflected in the change in lithology. The results suggest that the differentiation of a homogeneous precursor sediment into a LMA is possible and caution should be exercised using lithological change or proxies which are potentially altered by CaCO3 redistribution for cyclostratigraphic analyses.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3