Influence of channelized-flow density structure on the stratal architecture of deep-marine levee deposits

Author:

Bergen Anika L.1,Cunningham Celeste M.1,Terlaky Viktor1,Arnott R. William C.1

Affiliation:

1. Department of Earth and Environmental Sciences, Ottawa–Carleton Geoscience Centre, University of Ottawa, 150 Louis-Pasteur Private, room 342, Ottawa, Ontario K1N 6N5, Canada

Abstract

ABSTRACT Deep-water channel and levee deposits are common depositional elements on modern and ancient continental slopes. Unlike their channel counterparts, the spatial and temporal evolution of levee stratigraphy is much less well understood, in part because of the typically more recessive nature of levee deposits in the ancient sedimentary record, and sparse, widely spaced core control or seismic images of insufficient resolution in the modern. Moreover, it is generally inferred that levee development, at least in part, precedes the main phase of channel filling, the reasons for which remain largely unknown. In the Isaac Formation of the Windermere Supergroup (Neoproterozoic) of east-central British Columbia, Canada, well-exposed levee deposits are divided vertically into packages, each consisting of a sand-rich lower part overlain sharply by a mud-rich upper part. The lower part (3–10 m thick) consists mostly of medium- to thick-bedded, upper medium- to coarse-grained, lower-division turbidites intercalated with thin-bedded, fine-grained, upper-division turbidites. Along depositional strike away from channel-fill margins, the thickness of lower-division turbidites exhibit a distinctive thickening and then thinning over a few hundreds of meters that results in a similar thickening and thinning of the entire lower part of a package. The upper part (3–16 m thick) consists mostly of thin-bedded, fine-grained, upper-division turbidites intercalated with uncommon medium- to thick-bedded, medium-grained, lower-division turbidites. Significantly, the thickness of very thin- and thin-bedded turbidites in the upper part generally decreases stratigraphically upward whereas the thickness of intercalated medium- and thick-bedded turbidites changes little. The lateral and vertical changes in these deposits suggest that channelized flows were initially coarse grained and moderately well-sorted, causing them to exhibit negligible density stratification, and therefore high flow efficiency. We interpret that the velocity maximum occurred above the height of the incipient channel margins, thereby allowing the lower, coarse-grained, dense part of flows to easily overspill and deposit thick-bedded, coarse-grained turbidites in the lower part of each package. The sharp contact with the upper part of each package marks the point when relief from channel floor to levee crest exceeded the height of the velocity maximum in average throughgoing turbidity currents. Above this height, density of the flow decreased abruptly and consisted of significantly finer-grained sediment that overspilled to form the upper, finer-grained part of each package. Later the makeup of the sediment supply changed to a more polydispersed grain-size distribution, which caused the throughgoing currents to be more density stratified. This enhanced near-bed stratification and concentration effects, which in addition to intense interfacial mixing, resulted in rapid kinetic energy loss, and promoted deposition in the channel.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3