Sedimentology and reservoir architecture of a widespread siliciclastic intra-lava unit, Kangerlussuaq, East Greenland

Author:

Vosgerau Henrik1,Guarnieri Pierpaolo1,Weibel Rikke1,Larsen Michael2,Bell Brian3,Sørensen Erik V.1,Nøhr-Hansen Henrik1

Affiliation:

1. Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen K, Denmark

2. INEOS Oil and Gas Denmark, Teknikerbyen 5, 2830 Virum

3. School of Geographical & Earth Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.

Abstract

ABSTRACT The Rosebank hydrocarbon discovery in 2004 proved that intra-lava sandstones form attractive reservoirs in the Faroe–Shetland Basin and the new volcanic play triggered the need for suitable analogues to describe and assess sedimentology, reservoir architecture, compartmentalization, and connectivity of intra-lava siliciclastic units. The onshore Kangerlussuaq Basin in East Greenland offers the opportunity to study Paleogene intra-lava siliciclastic sandstones and their interaction with lavas, on the scale of the Rosebank Field. The focus of this study is a siliciclastic-dominated intra-lava unit, 4–10 m thick, exposed in almost vertical cliff sections over distances of several kilometers. The unit reflects a short return to siliciclastic deposition following initiation of volcanic activity and extrusion of the first lava flows in the area. Deposition took place as shoreface and delta progradation in a marine-influenced, shallow embayment. Lateral variations in sedimentary facies distribution and geometry are prominent and were largely governed by an interplay of base-level variations and autocyclic processes, the surface roughness and type of substratum on which deposition took place, and differential block movements before and during deposition. Presence of local topographic barriers are of key importance and influenced the lava–sediment interaction and the resulting 3D-geometry of lava flows and sediment bodies. In addition, compartmentalization of the intra-lava sandstone unit is observed and is controlled by the offset across normal faults, intersecting dikes, and to a lesser extent by invasive and eroding lavas. A depositional model is suggested that incorporates the detailed sedimentological and 3D photogrammetric observations and presents a possible explanation for the contrasting architecture of the intra-lava unit observed in three areas located a few kilometers apart. The model embraces the complex interplay between siliciclastic and volcanic settings and reveals important aspects to consider when recoverable volumes of hydrocarbons are estimated in intra-volcanic subsurface reservoirs in volcanic rifted margins with poor seismic imaging of the relatively thin intra-lava reservoirs.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3