The impact of tectonic activity on carbonate density-flow deposition along two sectors of the Apulia Carbonate Platform

Author:

Saelen Gunnar1,Spalluto Luigi2,Grunnaleite Ivar3,Sande Atle Jørgen Hestad1,Jensen Niels Bo1,Svendsen Per Olav Eide1,Osso Gaetano4,Paoli Nicola4,Talbot Michael R.1

Affiliation:

1. 1 Department of Earth Science, University of Bergen, Allégtaten 41, N-5007 Bergen, Norway

2. 2 Dipartimento di Scienze della Terra e Geoambientali, Univeristà degli Studi di Bari “Aldo Moro,” via E. Orabona, 4, I-70125, Bari, Italy

3. 3 Tectonor, c/o IPark, P.O. Box 8034, N-4068 Stavanger, Norway

4. 4 Studi & Ricerche Geologiche, Via Orti no. 21, 87032 Amantea (Cs), Italy

Abstract

ABSTRACTGeneration of thick megabreccias along carbonate platforms apparently relies on the establishment of overpressured zones in the margin and upper slope deposits (particularly during relative sea-level lowstands), but the main triggering mechanism is thought to be seismic tremors. Here, we present a detailed sedimentological analysis of carbonate density-flow deposits south and north of the Mattinata Fault, a major strike-slip fault zone in the Gargano Promontory (Italy). The analysis shows that in the southern sector the deposits of Albian–Cenomanian age (Monte S. Angelo Formation) are made up predominantly of thick and amalgamated debrites (megabreccias), whereas some 25 km to the north they are composed predominantly of prograding high-density turbidites. Moreover, detailed analysis of Maastrichtian slope deposits (Monte Acuto Limestones) from the southern sector shows that they make up a N–S-prograding system of coalesced lobes composed of high-density turbidites and subordinate debrites. We infer that preconditional factors (e.g., platform progradation, tectonic oversteepening, and high pore pressures in the margin and upper-slope deposits) for triggering the density flows varied along strike of the platform, but the main controlling factors were the activity of the prominent strike-slip Mattinata Fault and the propagation of tremor energy to its near- and far-field regions: large earthquakes triggered thick (up to 40 m) and amalgamated Albian–Cenomanian debrites in proximity (south of) to the fault, whereas the subdued effect of the tremors triggered thinner debrites (5–10 m) and rock falls in the far-field region north of the fault. Moreover, predominantly high-density turbidite deposits were emplaced in the far-field region during lower-magnitude earthquakes. During the Maastrichtian the thick succession of high-density turbidites and scattered thick debrites south of and adjacent to the Mattinata Fault may record an overall quiescent period of the fault. The results are of relevance for understanding the spatiotemporal distribution of density-flow deposition along carbonate platforms in tectonically active regions—in particular with respect to the activity of large strike-slip faults.

Publisher

Society for Sedimentary Geology

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3