Analysis of the fluvial stratigraphic response to the Paleocene–Eocene Thermal Maximum in the Bighorn Basin, U.S.A.

Author:

Owen Amanda1,Hartley Adrian J.2,Hoey Trevor B.3,Ebinghaus Alena2,Jolley David W.2,Weissmann Gary S.4

Affiliation:

1. 1 School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, U.K.

2. 2 Department of Geology and Petroleum Geology, University of Aberdeen, Aberdeen AB24 3UE, U.K.

3. 3 Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UB8 3PH, U.K.

4. 4 Department of Earth and Planetary Sciences, University of New Mexico, New Mexico, 87131, U.S.A.

Abstract

ABSTRACT Geological deposits can reveal how environments of the past have responded to climate change, enabling important insights into how environments may respond to our current anthropogenically induced warming. The Paleocene–Eocene Thermal Maximum (PETM) occurred ca. 56 Ma and was a short-lived (approximately 200,000 years) global warming event (5–8°C rise). The PETM has been investigated at several terrestrial and marine localities across the globe. However, many studies are based on single successions, with very few sites being placed within a well-defined spatial and temporal context and with comparisons limited to deposits that lie immediately above and below the event. Due to the inherent variability of sedimentary systems, it is imperative that the appropriate context is provided to fully understand the impacts of climate change on landscapes and subsequent deposits. This study examines 28 locations, totaling over 4 km of recorded stratigraphy, within a newly defined quantified sedimentary basin context (Bighorn Basin, USA) to evaluate variability of fluvial response to the PETM. We show that channel-body and story thicknesses across the PETM are not statistically significantly different from deposits outside the climate event, implying that there is not a consistent sedimentary response to the climate event across the basin. Based on our large dataset we calculate that precipitation would have had to double for statistically significant changes in deposit thickness to be generated. We discuss how climatic signals may be lost due to the self-organization, spatial–temporal varied response and preservation potential in large fluvial systems. This study gives a new quantified perspective to climate events in the geologic record.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3