Sublacustrine geomorphology and modern sedimentation in a glacial scour basin, June Lake, eastern Sierra Nevada, U.S.A.

Author:

Lyon Eva C.1,McGlue Michael M.1,Woolery Edward W.1,Kim Sora L.2,Stone Jeffery R.3,Zimmerman Susan R.H.4

Affiliation:

1. Department of Earth and Environmental Science, 121 Washington Avenue, University of Kentucky, Lexington, Kentucky 40506, U.S.A.

2. Department of Life and Environmental Sciences, University of California–Merced, Merced, California 95343, U.S.A.

3. Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, U.S.A.

4. Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94550, U.S.A.

Abstract

ABSTRACT Small sub-alpine glacial lakes are often targeted as Holocene paleoclimate archives, but their evolution as landforms and depositional basins is understudied. At June Lake in the eastern Sierra Nevada of California (USA), bathymetry, surface sediment composition, and seismic stratigraphy are studied to assess the modern sedimentary system and gain insight into the basin's origins. A basin-wide seismic survey reveals sublacustrine morphological features that attest to the role of ice in scouring the June Lake basin, including a prominent abraded bedrock shoal and an adjacent overdeepened depression. The seismic survey reveals four acoustically distinct stratigraphic units that reflect the history of sedimentation following glacial scouring. The youngest of these is represented in the recovered lacustrine core records as hemipelagically deposited, organic-rich, laminated diatomaceous oozes alternating with coarse tephra beds. The organic-rich oozes are characterized by low carbon and nitrogen stable-isotope values and occur in profundal areas of the modern lake floor. These sediments suggest an algae-dominated productivity regime and preservation of organic matter at depth. With no perennial streams entering June Lake, surface-sediment grain-size distribution and geochemistry are controlled by water depth and basin morphology. Additional modern facies types include poorly sorted coarse detrital landslide deposits below steep basin walls and volcaniclastic sandy gravel in windward littoral areas. These data provide a modern facies model for sedimentation in ice-scoured, hydrologically closed sub-alpine lakes and a baseline for future paleoclimate studies using June Lake sediment cores.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3