Decompositional processes of microbial carbonates in Lagoa Vermelha, Brazil

Author:

Shiraishi Fumito1,Hanzawa Yusaku1,Asada Jiro2,Cury Leonardo Fadel3,Bahniuk Anelize Manuela3

Affiliation:

1. 1 Earth and Planetary Systems Science Program, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan

2. 2 INPEX Solutions, Ltd., Akasaka Biz Tower 5-3-1, Akasaka, Minato-ku, Tokyo 107-6332, Japan

3. 3 LAMIR Institute, Federal University of Parana, Francisco H. dos Santos, 100 Jardim das Américas, Centro Politécnico, P.O. Box 19062, 81531-980, Curitiba, PR, Brazil

Abstract

ABSTRACTIn Lagoa Vermelha, Brazil, a lagoonal stromatolite and a saltpan microbial mat are investigated to understand the influence of environmental changes on the decomposition of microbial carbonates. The lagoonal stromatolite, composed mainly of magnesian calcite and aragonite, is developed on a dolomite-containing carbonate crust. While most stromatolites are eroded to the water surface level, some smaller, green stromatolites below the water surface retain a domal shape. The domal stromatolite surface is dominated by endolithic cyanobacteria with conspicuous microborings. In addition, microbial aerobic respiration causes carbonate dissolution in darkness, and metazoans grazing the inner surface of the stromatolite excrete fecal pellets. This suggests that the formational stage of lagoonal stromatolites has ceased and they are now decomposing, most likely because of environmental changes in recent years. The microbial mat, which is about 3 cm thick, developed in a saltpan pond precipitating carbonate and gypsum, and it contains quartz, magnesian calcite, aragonite, and gypsum. At the time of the investigation, the population of oxygenic phototrophs is low at the mat surface, and carbonate dissolution, rather than precipitation, is occurring by microbial metabolism deeper in the mat. This suggests that the formation of carbonate in the mat has ceased and is decomposing, probably due to the progressive salinity increase in the salt pan. This examination of two carbonate deposits in Lagoa Vermelha suggests that microbial metabolism is an important process for decomposing microbial carbonates in addition to grazing and microboring, and that environmental changes may alter microbial compositions from carbonate-constructive to carbonate-destructive communities.

Publisher

Society for Sedimentary Geology

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3