SUPERCRITICAL FLUVIAL STYLES AND THE SHIFTING ARIDITY IN THE EARLY TRIASSIC: THE EXAMPLE OF THE SANGA DO CABRAL FORMATION, PARANá BASIN, BRAZIL

Author:

XAVIER PEDRO L.A.1,SCHERER CLAITON M. DOS S.12,DOS REIS ADRIANO DOMINGOS2,DE SOUZA EZEQUIEL GALVÃO3,GUADAGNIN FELIPE3,PIÑEIRO GRACIELA4

Affiliation:

1. 1 Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil

2. 2 Departamento de Paleontologia e Estratigrafia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil

3. 3 Universidade Federal do Pampa, Brazil

4. 4 Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Iguá, 4225, 11400 Montevideo, Uruguay

Abstract

Abstract Froude-supercritical bedforms and associated sedimentary structures are formed in turbulent flows when the value of the Froude number is Fr > 1. They have been increasingly studied in recent years, and while they were previously considered to be of rare preservation, they have been increasingly identified in modern settings and the rock record. In alluvial systems, these structures are being recognized as characteristic of rivers with high variability of discharge, especially in arid, semiarid, and subhumid tropical and subtropical climates. However, the development of facies models for such rivers remains tentative, particularly for the rock record, and with the exception of Australia, examples in Gondwana are scarce. The Early Triassic Sanga do Cabral Formation represents an arid to semiarid ephemeral fluvial system cropping out in southern Brazil, southwestern Gondwana. This study reinterprets the sedimentary structures in this formation as Froude-supercritical structures and identifies three fluvial styles (FS). FS1 predominantly consists of fine-grained massive sandstone with interruptions of intraclastic conglomerates, and occasionally visible faint lamination and mud-intraclast levels. It is interpreted as deposited by unconfined flows in the distal part of a fluvial system, generating hyperconcentrated flows which resulted in thin beds of fine-grained sandstone with massive structure or planar lamination and incipient antidunes. FS2 was deposited by flash floods occurring repeatedly within a short period during a wet season. This resulted in a fining-upwards succession of intraclastic conglomerates with supercritical-flow structures, through sandstones with supercritical-flow structures, to sigmoidal cross-stratification and ripple marks with diffuse lamination. FS3 was deposited by catastrophic flash floods characterized by high discharge and flow velocity, possibly generated by erratic storms, which poured in single events. These catastrophic flows generated large-scale sandy antidunes and other Froude-supercritical bedforms with mud intraclasts, which deposited sandstone in undulatory laminae, and other supercritical-flow structures. These floods waned extremely rapidly, bypassing the stability field of lower-flow-regime bedforms. Measurements taken from undulatory stratification, interpreted as antidune deposits, allowed the estimation of paleoflow velocity and depth. The largest antidunes had a maximum estimated wavelength of 28.92 m (with a mean of 15.4 m) and maximum estimated height of 1.42 m (with a mean of 0.85 m), resulting in an estimated paleoflow velocity of up to 6.72 ms−1 (with a mean of 4.9 ms−1) and a maximum flow depth of 1.59 m (with a mean of 0.9 m). These parameters are comparable to those observed in modern fluvial floods. This study reinforces the significance of Froude-supercritical structures in enhancing our understanding of fluvial systems characterized by high variability in discharge, allowing a finer interpretation of their discharge patterns. This approach can be applied to better understand the many arid, semiarid, or strongly seasonal environments of the Early Triassic period in Gondwana, and potentially other regions and geological times.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3