END-PERMIAN BURNOUT: THE ROLE OF PERMIAN–TRIASSIC WILDFIRES IN EXTINCTION, CARBON CYCLING, AND ENVIRONMENTAL CHANGE IN EASTERN GONDWANA

Author:

MAYS CHRIS1,MCLOUGHLIN STEPHEN2

Affiliation:

1. 1 School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Distillery Fields, Cork T23 N73K, Ireland

2. 2 Swedish Museum of Natural History, Svante Arrhenius v. 9, SE-104 05, Stockholm, Sweden

Abstract

ABSTRACTWildfire has been implicated as a potential driver of deforestation and continental biodiversity loss during the end-Permian extinction event (EPE; ∼ 252 Ma). However, it cannot be established whether wildfire activity was anomalous during the EPE without valid pre- and post-EPE baselines. Here, we assess the changes in wildfire activity in the high-latitude lowlands of eastern Gondwana by presenting new long-term, quantitative late Permian (Lopingian) to Early Triassic records of dispersed fossil charcoal and inertinite from sediments of the Sydney Basin, eastern Australia. We also document little-transported fossil charcoal occurrences in middle to late Permian (Guadalupian to Lopingian) permineralized peats of the Lambert Graben, East Antarctica, and Sydney and Bowen basins, eastern Australia, indicating that even vegetation of consistently moist high-latitude settings was prone to regular fire events. Our records show that wildfires were consistently prevalent through the Lopingian, but the EPE demonstrates a clear spike in activity. The relatively low charcoal and inertinite baseline for the Early Triassic is likely due in part to the lower vegetation density, which would have limited fire spread. We review the evidence for middle Permian to Lower Triassic charcoal in the geosphere, and the impacts of wildfires on sedimentation processes and the evolution of landscapes. Moreover, we assess the evidence of continental extinction drivers during the EPE within eastern Australia, and critically evaluate the role of wildfires as a cause and consequence of ecosystem collapse. The initial intensification of the fire regime during the EPE likely played a role in the initial loss of wetland carbon sinks, and contributed to increased greenhouse gas emissions and land and freshwater ecosystem changes. However, we conclude that elevated wildfire frequency was a short-lived phenomenon; recurrent wildfire events were unlikely to be the direct cause of the subsequent long-term absence of peat-forming wetland vegetation, and the associated ‘coal gap' of the Early Triassic.

Publisher

Society for Sedimentary Geology

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3