STRONTIUM ISOTOPE STRATIGRAPHY REVEALS 100 KY-SCALE CONDENSATION, BEVELING, AND INTERNAL SHINGLING OF TRANSGRESSIVE SHELL BEDS IN THE MARYLAND MIOCENE

Author:

ZIMMT JOSHUA B.12,KIDWELL SUSAN M.3,LOCKWOOD ROWAN1,THIRLWALL MATTHEW4

Affiliation:

1. 1 William and Mary, Department of Geology, P.O. Box 8795, Williamsburg, Virginia 23187 USA

2. 2 University of California Berkeley, Department of Integrative Biology, 1101 Valley Life Sciences Bldg, Berkeley, California 94720 USA (present address)

3. 3 University of Chicago, Department of Geophysical Sciences, 5734 S Ellis Ave, Chicago, IL 60637 USA

4. 4 Department of Earth Sciences, Royal Holloway University of London, TW20 0EX UK

Abstract

Abstract Condensed transgressive shell beds, rich in paleobiological information, are common in the Phanerozoic stratigraphic record, but their interpretation is complicated by the uncertain amount of time that each deposit represents. Miocene strata exposed in the Calvert Cliffs (Maryland, USA) are known for a series of regionally extensive, densely packed, meters-thick shell beds that serve as global exemplars of shallow-water condensation during marine transgression and onlap. Applying Sr isotope stratigraphy to calcitic scallops from the base and top of the oldest of these beds (Shattuck Zone 10), we demonstrate that its most densely fossiliferous part accumulated over the interval of 16.60–15.95 Ma, reflecting approximately 0.65 ±0.20 Myr of skeletal accumulation within the Miocene Climatic Optimum, with a likely 0.15 Myr-scale of time averaging per each firmground-bounded subunit. Both of these estimates are an order of magnitude longer than previous best estimates based on radiocarbon-dated Holocene analogs. Sr isotopes confirm subtle low-angle erosional beveling of the main body of Zone 10, truncating 0.3-Myr of record in updip sections, and demonstrate that a down-dip wedge of less shelly sand is an entirely younger (by ∼ 0.5 Myr) interleaved body. This condensation, beveling, and inter-shingling within Zone 10 quantified here sets a precedent for the magnitude of lateral and vertical temporal variability within condensed transgressive deposits, relevant to paleobiologic and other geohistorical analysis, and justifies the interpretation of comparably complex temporal fabrics based upon similar physical stratigraphic features found elsewhere in this and other very thin stratigraphic records.

Publisher

Society for Sedimentary Geology

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3