MILLENIAL-SCALE TIME AVERAGING INFERRED BY DISCOLORED SHELLS IN BEACH DEATH ASSEMBLAGES

Author:

MARTÍNEZ SERGIO1,ROJAS ALEJANDRA1

Affiliation:

1. Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay

Abstract

ABSTRACT Molluscan death assemblages occurring on present-day beaches frequently consist of secondary-colored shells, with yellow to brown and gray to black colors. It is hypothesized that this secondary coloration can be related to postmortem age and to conditions in the taphonomically active zone, altering shells to black and gray tones in reducing conditions, and then becoming yellowish or brownish in oxidizing settings. In this study, we assessed whether the variability in the degree of shell discoloration of two species of the infaunal bivalve Mactra collected in beach death assemblages from a temperate siliciclastic beach in Uruguay is a function of postmortem age, and whether this variability in discoloration can be linked to differences in their elemental composition, microstructure, and provenance. Although we did not detect any differences in mineralogy or elemental composition among shells differing in discoloration, we show that modern (younger than a century) beach shells are not secondary-colored, but have remained white, but some white shells are also old (millennial). In contrast, yellow and gray shells are consistently older than 1,000 years, indicating that this degree of discoloration requires millennial residence times in the taphonomically active zone and suggesting that discoloration can be used as an indicator of time averaging. Discolored shells are derived from subtidal death assemblages.

Publisher

Society for Sedimentary Geology

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3