STRUCTURE OF THE DECISION SUPPORT INFORMATION SYSTEM BY THE NPP OPERATOR

Author:

Ушков М.Е.,Бурковский В.Л.

Abstract

Рассматривается структура системы информационной поддержки процессов принятия решений оператором АЭС в оперативных условиях. Анализируются функциональные возможности системы информационной поддержки оператора (СИПО) на примере Нововоронежской атомной электростанции (НВ АЭС). Данная система дает возможность оператору, управляющему распределенным комплексом технологических объектов АЭС, проводить качественный анализ и обработку больших объемов сложностpуктурированной информации и принимать своевременные адекватные решения в темпе реального времени. Кроме того, рассматривается объект управления и его структура, приводятся рекомендации, направленные на увеличение функциональных возможностей СИПО на базе искусственных нейронных сетей. Одной из многочисленных функций СИПО является прогнозирование состояния объекта управления на основе реализации программно-технологического комплекса модели энергоблока (ПТК МЭ). Однако существующая модель не способна учесть все факторы, влияющие на производственный процесс. Альтернативой здесь выступает искусственная нейронная сеть, которая в процессе обучения может сформировать искомые зависимости между большим числом параметров объекта управления и получить более полный и достоверный прогноз. Предложена структура искусственной нейронной сети на базе нечёткой системы вывода, которая реализует возможности нейронных сетей и нечеткой логики We considered the structure of the information support system for decision-making by the NPP operator in operational conditions. We analyzed the functional capabilities of the operator information support system (SIPO) using the example of the Novovoronezh nuclear power plant (NV NPP). This system provides the operator managing the distributed complex of NPP technological facilities to carry out high-quality analysis and processing of large volumes of complex structured information and make timely adequate decisions in real time. In addition, we considered the control object and its structure and made recommendations aimed at increasing the functionality of the SIPO based on artificial neural networks. One of the many functions of the SIPO is to predict the state of the control object based on the implementation of the software and technological complex of the power unit model. However, the existing model is not able to take into account all the factors influencing the production process. An alternative here is an artificial neural network, which in the learning process can form the required dependencies between a large number of parameters of the control object and get a more complete and reliable forecast. The proposed structure of an artificial neural network based on a fuzzy inference system, which implements the capabilities of neural networks and fuzzy logic

Publisher

Voronezh State Technical University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3