SUBSTANTIATION OF APPLICATION OF UNDERGROUND REDUCTION CHAMBER IN LIQUEFIED PETROLEUM GAS SUPPLY SYSTEMS

Author:

Osipova N. N.,Bychkova I. M.

Abstract

Statement of the problem. When reducing the vapor phase of propane-butane in the pressure regulators of the above-ground closet gas control points, water falls out in free form and at subzero temperatures of ice and crystalline hydrates formation. In order to prevent this, methods are employed in the form of applying thermal insulation and heating the inner space of the cabinet, which significantly increases the cost of the structure and the reduction process. As an alternative, the authors set forth an underground reduction chamber. The article provides a scientific rationale for the use of this underground chamber in the practice of gas supply to consumers. Results. The configuration of the reduction chamber has been substantiated, mathematical modeling of the heat exchange processes of the chamber with the surrounding soil massif has been performed, the thickness of the thermal insulation of the ascending section of the vapor phase and the reduction chamber has been selected, and the process of reduction of the vapor phase in pressure regulators has been simulated. Conclusions. According to the results of the studies, the cylindrical shape is optimal for the reduction chamber, which provides the minimum total surface of the enclosing structures. The implementation of the economic and mathematical model made it possible to recommend the optimal thicknesses of the thermal insulation of the chamber and the ascending section of the vapor phase, enabling the process of throttling of the liquefied petroleum gas vapor phase in pressure regulators without the release of free water and the formation of ice and hydrate plugs.

Publisher

Voronezh State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3