A Mathematical Model for Complete Morphological Regression in Primary Operable HER2-Positive Breast Cancer

Author:

Orlov A. E.1ORCID,Kaganov O. I.1ORCID,Saveliev V. N.2ORCID,Tkachev M. V.1ORCID,Borisov A. P.1ORCID,Kruglova P. L.2ORCID

Affiliation:

1. Samara Regional Clinical Oncology Dispensary; Samara State Medical University

2. Samara Regional Clinical Oncology Dispensary

Abstract

Background. Breast cancer (BC) is distinguished with its biological tumour subtypes as luminal A, B, HER2-positive and triple-negative. The current clinical guidelines of the Russian Ministry of Health prescribe neoadjuvant targeted chemotherapy as combined treatment in the HER2-positive cancer subtype. An adequate model for treatment efficacy prediction in such patients had been missing to date.Aim. Development of a mathematical model and its computer realisation for complete morphological regression estimation in patients with primary operable HER2-positive breast cancer.Materials and methods. Statistically significant predictors were estimated with the treatment outcome data on 103 HER2- positive breast cancer cases with neoadjuvant targeted chemotherapy. A binary logistic regression model was developed to account for a dichotomous variable dependency on certain predictors.Results and discussion. Multivariate analysis laid out a mathematical model and software “Complete morphological regression estimation in primary operable EGFR-expressing breast cancer under neoadjuvant chemotherapy”. Our results attest that the program correctly automates a systematic estimation of complete morphological regression achieved prior to neoadjuvant targeted chemotherapy and is clinically justified for optimising treatment regimens in primary operable HER2-positive BC.Conclusion. The mathematical model and computer program developed estimate the rate of complete morphological regression achieved prior to neoadjuvant targeted chemotherapy with a high 92 % sensitivity, 97.33 % specificity and 93.21% accuracy.

Publisher

Bashkir State Medical University

Subject

General Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3