A ROBUST DEEP LEARNING APPROACH TO ENHANCE THE ACCURACY OF POMEGRANATE FRUIT DISEASE DETECTION UNDER REAL FIELD CONDITION

Author:

Nirgude Vaishali,Rathi Sheetal

Abstract

Pomegranate fruits are infected by various diseases and pests, which negatively affect food security, productivity, and quality. Recent advancements in deep learning with Convolutional Neural Networks (CNNs) have significantly improved the accuracy of fruit disease detection and classification. The main objective of this investigation is to find the most suitable deep-learning architecture to enhance fruit disease detection and classification accuracy. The current study proposed an efficient deep learning-based approach to detect the most prominent diseases of pomegranate such as bacterial blight, anthracnose, fruit spot, wilt, and fruit borer. For experimentation, a total of 1493 stagewise diseases development images of fruits and leaves are captured via a camera of an interval of 25 days for a total of six months duration. Additionally, extensive data augmentation was performed to increase the dataset, data diversity and to achieve a more robust model for disease detection. For this, the performance of three CNN-based architectures i.e., ResNet50, ResNet18, and Inception-V3 on a real field environment dataset was measured. Experimental results revealed that the proposed CNN-based ResNet50 architecture has effectively detected and classified five different types of diseases whose symptoms are not well defined and with the capability to deal with complex backgrounds. The optimized ResNet50 model achieved 97.92 % test accuracy over ResNet18 (87.5 %) and Inception-V3 (78.75 %) on learning rate 0.001. The multiclass cross-entropy loss function is applied for determining the error rate. To deal with CNN ‘Black Box’ problem Grad-CAM model can be used in the future. The proposed method will help the agricultural industry in detecting the most prominent diseases of pomegranate, which are likely to cause a decrease in productivity, thereby avoiding economic loss.

Publisher

Journal of Experimental Biology and Agricultural Sciences

Subject

General Agricultural and Biological Sciences,General Veterinary,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3