In-silico designing of a potent ligand molecule against PTEN (Phosphatase and tensin homolog) implicated in Breast Cancer

Author:

Raghav MuktaORCID,Sharma VarruchiORCID,Gupta ShagunORCID,Kaushal AnkurORCID,Vashishth AmitORCID,Tuli Hardeep SinghORCID,Dhama KuldeepORCID,Sharma AnilORCID

Abstract

Breast cancer has been attributed to be the second most common malignancy in females worldwide after skin cancer associated with a significantly high mortality rate. Tumor suppressor genes have an indispensable role in maintaining genomic integrity as well as cell cycle regulation. Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is one of the most frequently mutated human tumor suppressor genes, implicated in cell growth, survival, and suppressing tumor formation. As the tumor progresses to more advanced stages, genetic alterations tend to increase one such alteration is the mutation of the PTEN gene which is linked to programmed cell death and maintenance of cell cycle regulation. There is a syndrome known as Cowden syndrome associated with a high risk of breast cancer which is a result of an outcome of germline mutations in the PTEN gene. Loss of PTEN activity, either at the protein or genomic level, has been related to many primary and metastatic malignancies including breast cancer. This study focuses on developing a potential bioavailable ligand inhibitory molecule for PTEN, using a computer-aided drug design approach (CADD). A library of developed ligands consisting of 50 potential molecules was screened to find a potential candidate to be used for second generation drug development. Among them, LIG28 was adjudged as the most effective and potential PTEN inhibitor given its maximum binding affinity of ΔG -5.96Kcal/mole with a lower RMSD value. Carmer’s Rule of toxicity further revealed the compatibility and non-toxicity of the molecule. These observations underscore the importance of PTEN as a target in the development of tumorigenesis and the prognosis of breast cancer.

Publisher

Journal of Experimental Biology and Agricultural Sciences

Subject

General Agricultural and Biological Sciences,General Veterinary,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3