Abstract
Both the biotic and abiotic stressors restrict the yield potential of many crops, including bananas. Bananas belong to the genus Musa and are the world’s most popular and widely produced fruit for their nutritional and industrial importance. The demand for bananas is growing each day worldwide. However, different pest infestations are hampering the production of bananas, making it a matter of concern for global food security. Several biotechnological tools and applications including RNA interference (RNAi) have been employed to enhance the biotic stress resistance in plants. The capacity to silence targeted genes at transcriptional and post-transcriptional levels makes the RNAi technique a popular choice for gene knock-down and functional genomics studies in crops. Silencing of different suppressor molecule coding genes through RNAi helps crops to combat the detrimental effects of plant pathogens. The host-induced gene silencing (HIGS) technology, also known as the host-delivered RNAi (HD-RNAi), is nowadays gaining popularity due to its ability to target an array of pathogens, comprising bacteria, nematodes, fungi, viruses, and insects. This methodology is employed to manage disease pest outbreaks in a diverse range of crop species, including bananas. Besides HIGS, virus-induced and spray-induced gene silencing (VIGS and SIGS, respectively) are the potential approaches where RNAi technology is exploited to control plant-pathogenic diseases. The current review emphasizes the different kinds of diseases of bananas and the potential of HD-RNAi, a new-age and promising technology to build a barrier against significant crop and economic loss.
Publisher
Journal of Experimental Biology and Agricultural Sciences
Subject
General Agricultural and Biological Sciences,General Veterinary,General Biochemistry, Genetics and Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献