Functional, and phylogenetic analysis of maleylacetate reductase of Pseudomonas sp strain PNPG3: An in-silico approach

Author:

Alam Sk AftabulORCID,Saha PradiptaORCID

Abstract

Shrinking freshwater ecosystems are under tremendous pollution threat due to anthropocentric activities. Para nitrophenol (PNP), a well-documented priority pollutant extensively used in dyes, petrochemical, pharmaceutical, explosives, pesticides, leather industries, and agrochemicals, is responsible for contaminating aquatic ecosystems globally. It is highly toxic and has carcinogenic and mutagenic effects on living organisms like humans and several animal models. Bioremediation approaches mainly involving bacteria are considered the best, most eco-friendly, cost-effective, green, and clean method for effective removal PNP from its contaminated sites. This manuscript highlights the structural and functional analysis of a lower pathway enzyme involved in PNP degradation, maleylacetate reductase (MR), from Pseudomonas sp strain PNPG3, which was recently isolated from a freshwater ecosystem. This enzyme plays a role in converting maleylacetate to 3-oxoadipate. Despite its crucial functional role, no model is available for this protein in the protein database (PDB). Therefore, attempts were made for the computational investigation of physicochemical, functional, and structural properties, including secondary, and tertiary structure prediction, model quality analysis, and phylogenetic assessment using several standard bioinformatics tools. This enzyme has a molecular weight of about ~37.6 kDa, is acidic and thermostable, belonging to a member of iron-containing alcohol dehydrogenase. Moreover, this study will benefit the scientific community in deciphering the prediction of the function of similar proteins of interest.

Publisher

Journal of Experimental Biology and Agricultural Sciences

Subject

General Agricultural and Biological Sciences,General Veterinary,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3