Cytotoxic Study of Zinc Oxide Nanoparticles on Cervical Cancer Cell Line

Author:

Maheswaran Harshyini,Djearamane Sinouvassane,Antony Dhanapal Anto Cordelia Tanislaus,Shing Wong Ling

Abstract

The advancement of nanomedicine drugs as an outcome of nanotechnology offers tremendous potential to enhance cancer-fighting tactics. Scientists have begun studying the role of NPs in immunotherapy, an area that is particularly beneficial in treating malignancies. Conventional treatment of cancer uses medications known as chemotherapy that frequently cause adverse effects on healthy tissues. Zinc is a vital micronutrient for the well-being of humans; therefore, nanomaterials such as zinc oxide nanoparticles (ZnO NPs) are progressively appealing as cutting-edge medical agents with implementations like anticancer properties. A bottom-up approach was utilized to chemically produce the ZnO NPs, which were characterized using Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray analysis (EDX). MTT assays have been carried out to study the cell viability percentage against multiple ZnO NPs concentrations and durations. The white ZnO NPs displayed a diverse morphology within the nanoscale range, featuring rod and spherical shapes. This synthesis was confirmed through EDX, which revealed distinct peaks corresponding to zinc and oxygen, affirming the formation of pure ZnO NPs. MTT assay data showed that ZnO NPs had a dose and time-dependent cytotoxicity against HeLa cells. This observation suggests that the ZnO NPs possess the potential to combat cancer and may hold promise for applications in biomedical research, particularly in the development of anticancer drugs.

Publisher

Journal of Experimental Biology and Agricultural Sciences

Subject

General Agricultural and Biological Sciences,General Veterinary,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3