Hematite Nanoparticle Mediated Enhancement of Chlorella minutissima Lipid Productivity for Sustainable Biodiesel Production

Author:

Pahariya RichaORCID,Chauhan AbhishekORCID,Ranjan AnujORCID,Basniwal Rupesh KumarORCID,Upadhyay SumantORCID,Kataria SmileORCID,Tuli Hardeep SinghORCID,Shahwan MoyadORCID,Pathak Vinay MohanORCID,Jindal TanuORCID

Abstract

This study aims to enhance lipid and biofuel productivity from Chlorella minutissima with hematite (α-Fe2O3) nanoparticles (IONPs) as a growth stimulant. The IONPs were synthesized using chemical method and characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) analysis to confirm their structure and composition. The experimental setup involved inoculating various concentrations of IONPs (10, 20, and 30 mg·L−1) into the microalgal BG-11 growth medium to evaluate their impact on microalgal growth and biodiesel production. Results of this study showed that a concentration of 10 mg·L−1 of IONPs significantly increased the biomass concentration to 508.1 mg·L−1 over a 20-day cultivation period, achieving the highest biomass production rate of 31.7 mg·L−1·d−1 at this concentration. The lipid extracted from the microalgal biomass was subsequently transesterified into biodiesel. Key biodiesel properties, such as cetane number, calorific value, density, and viscosity, were measured to assess fuel quality. The findings demonstrate that incorporating hematite nanoparticles into the microalgal growth medium can significantly boost both lipid content and overall growth, thereby improving biodiesel production. This study suggests that the use of α-Fe2O3 nanoparticles presents a promising approach for scalable and sustainable biofuel production from microalgae.

Publisher

Journal of Experimental Biology and Agricultural Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3