Inheritance pattern of Qualitative traits, Genetic analysis and association of yield attributes in F2 populations of Rice (Oryza sativa)

Author:

S SanthiyaORCID,R PushpamORCID,A SubramanianORCID,A John JoelORCID,A SenthilORCID,R SureshORCID,S ManonmaniORCID,K Pravin KumarORCID

Abstract

Understanding the extent of genetic variability within the segregating generations is crucial for identifying superior segregants with high yield and better market acceptability. Thus, the present study was carried out to quantify the extent of genetic variation available in the segregating population of rice. Three crosses, viz., CO 55 × IC 457996, CO 55 × IC 464685, and CO 55 × IC 115439 were evaluated using a non-randomized experimental design for six yield attributing and two physical grain quality traits in F2 generation. The inheritance pattern of basal leaf sheath colour and grain colour in CO 55 × IC 115439 indicate digenic complementary gene interaction (9:7), whereas grain colour in CO 55 × IC 464685 exhibits inhibitory gene action (13:3). The positively skewed nature of productive tillers per plant and single-plant yield in the F2 segregants emphasizes the need for intensive selection to facilitate rapid improvement due to the influence of complementary gene action. Moderate to high GCV with high heritability and GAM for traits such as plant height, productive tillers per plant, hundred seed weight, grain width, and single-plant yield in the F2 segregants underscore the prevalence of additive gene action and thus provide the most effective condition for simple phenotypic selection. Moreover, productive tillers per plant and single-plant yield showed a strong positive association in all the crosses. Therefore, productive tillers per plant can be considered an indicator trait when selecting high-yielding segregants for grain yield improvement.

Publisher

Journal of Experimental Biology and Agricultural Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3