Abstract
The use of selective barriers as resorbable membranes has become a routine clinical procedure for guided bone regeneration. Therefore, the production of membranes with a low inflammatory potential during their resorption process has become the goal of a considerable number of researches. Aim: The purpose of the present study was to evaluate the biocompatibility of poly (L- lactic acid) (PLLA) and biocelulose membranes (BC) inserted in the subcutaneous tissue on the dorsum of rats. Methods: Fifteen animals underwent surgical procedures for the insertion of 4 types of membranes: COL (Collagen membrane) – Control Group; BC (Biocellulose membrane); BCAg (Biocellulose membrane impregnated with Silver); PLLA (Poly (L-lactic acid) membrane). All membrane types were inserted into each animal. Animals were euthanized after 3, 7, and 15 days of the surgical procedure. Descriptive histological analyses were carried out to investigate host tissue reaction to membrane presence by assessing the anti-inflammatory process composition associated with the membrane resorption and the presence of foreign-body reaction or encapsulation. Results: The BC membranes showed a higher degree of inflammation and poor pattern of integration with the surrounding tissues than the PLLA and COL membranes. Conclusion: The PLLA and COL membranes present better biocompatibility than the BC membranes.
Publisher
Universidade Estadual de Campinas
Reference26 articles.
1. Soldatos NK, Stylianou P, Koidou VP, Angelov N, Yukna R, Romanos GE. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017;48(2):131-47. doi: 10.3290/j.qi.a37133.
2. Wessing B, Lettner S, Zechner W. Guided bone regeneration with collagen membranes and particulate graft materials: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018 Jan/Feb;33(1):87-100. doi: 10.11607/jomi.5461.
3. Jang TS, Lee EJ, Jo JH, Jeon JM, Kim MY, Kim HE, et al. Fibrous membrane of nano-hybrid poly-L-lactic acid/silica xerogel for guided bone regeneration. J Biomed Mater Res B Appl Biomater. 2012 Feb;100(2):321-30. doi: 10.1002/jbm.b.31952.
4. Ikumi R, Miyahara T, Akino N, Tachikawa N, Kasugai S. Guided bone regeneration using a hydrophilic membrane made of unsintered hydroxyapatite and poly(L-lactic acid) in a rat bone-defect model. Dent Mater J. 2018 Nov;37(6):912-8. doi: 10.4012/dmj.2017-385.
5. Moura JM, Ferreira JF, Marques L, Holgado L, Graeff CF, Kinoshita A. Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits. J Mater Sci Mater Med. 2014 Sep;25(9):2111-20. doi: 10.1007/s10856-014-5241-1.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献