CONSTRUCTION OF THE KINEMATIC MODEL OF ROBOTIC SYSTEMS IN THE MATLAB ENVIRONMENT

Author:

Kifayat Mammadova, Aytan Aliyeva Kifayat Mammadova, Aytan Aliyeva,Nigar Baghirova Nigar Baghirova

Abstract

Robotics has become relatively accessible with low-cost projects, but there is still a need to create models that accurately represent the robot's physical behavior. Creating a virtual platform allows us to test behavioral algorithms using artificial intelligence. In addition, it will enable us to find potential problems in the physical design of the robot. The article describes the methodology of building a kinematic model and simulation of an autonomous robot. The development of a kinematic model and its implementation using several tools are presented. The environment used for the experiment is very close to natural conditions and reflects the kinematic characteristics of the robot. As a result, the simulation of the model following the mobile robot's kinematics is executed and tested in MATLAB. As a study, the m-file creation in MATLAB, its use with the Simulink package, and the solution of the forward and inverse problem of kinematics are shown. In addition to constructing the robot body using Simulink blocks, the structure of the kinematic scheme is simulated using the Denavit-Hartenberg (DH) parameters of the robot without blocks. "Simscape" and "Robotics System Toolbox" packages simulate forward and inverse kinematics using the Simulink package, and the robot's handle and body movement are observed. In the forward kinematics problem, the readings in the Scope compare the signals received from joint one and the end effector. For the inverse kinematic problem, the parameters of the manipulator along the XYZ axes are entered using the "Signal builder" block, and the circular movement of the arm is observed. In contrast, the handle of the manipulator remains fixed at a given point. Keywords: mobile robot, kinematic model, the forward and inverse problem of kinematics, Denavit-Hartenberg parameters, joint types

Publisher

Education Support and Investment Fund NGO

Subject

Immunology

Reference8 articles.

1. James L. Hill &Sheng-Der Tang. Kinematic Simulation of Robotic Systems/ CAD/CAM Robotics and Factories of the Future pp.100–104

2. Design Tools and Methods in Industrial Engineering.Proceedings of the Second International Conference on Methods and Design Tools in Industrial Engineering, ADM 2021, September 10, 2021, Italy, Rome.

3. Mammadova K.A., Amrah A.B. Development of a method for planning the trajectory of movement of a mobile autonomous robot in a three-dimensional environment based on a fuzzy logic apparatus. Proceedings of the 10th International Scientific and Practical Conference Science and Practice: implementation to modern Society Manchester, Great Britain 4-5.06.2021. pp.664-672

4. https://interconf.top/documents/2021.06.04-05.pdf.

5. Cordes, M.; Hintze, W.; Altintas, Y. Chatter stability in robotic milling. Robot. Comput. Integr. Manuf. 2019, 55, pp.11–18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3