ISOLATION WORKS AGAINST IRRIGATION WITH GEL COMPOSITION IN OIL RESERVES AT THE FINAL STAGE OF PROCESSING

Author:

Tarlan Ibadzada Tarlan Ibadzada

Abstract

At a time of high demand for energy carriers, it is important for the dynamic and long-term development of the oil industry of the country to increase the oil yield of long-term wells using various new methods of impact, along with the discovery, development and development of new and promising facilities. For the intensive development of the economy of the Republic of Azerbaijan, it is important to increase gas and oil production from oil fields in the Caspian Sea basin and onshore. In this regard, it is important to increase the efficiency of oil production in offshore and onshore fields, to improve the development system, work with the well fund, as well as the application of artificial impact methods. Due to the complications that occurred during the development of oil fields in the country, some of the wells are either temporarily or completely removed from the exploitation fund. One of these complications is the watering of the well product. Experience in the development of oil fields with different geological and physical properties shows that premature irrigation of existing wells, geological structure of fields, ratio of oil and water viscosity in the extracted fluid, heterogeneity of layers, oil composition, volume of injection and discharge affect. At present, there is a decrease in the amount of oil in the production of offshore and onshore oil fields, and an increase in water. Although many irrigated wells are insulated and repaired to prevent irrigation, the economic and technological efficiency of these wells is insufficient. Therefore, the creation of new and effective technologies to prevent the flow of water into wells remains relevant. Premature watering of oil wells results in reductions in oil production, reduced interval between repairs in wells, and corrosion of underground and surface equipment of wells. Many researchers have noted that it is not advisable to use long-term, large-scale and economically inefficient methods to increase oil production, so the development of more layers with local impact technologies is considered promising. These methods have significant results in the isolation of irrigated areas with higher permeability. This problem can be solved in two ways: 1) Isolation of water channels with injection wells 2) Isolation of water flow to production wells Numerous studies have shown that isolating water flow in wells gives better results. The contradiction in pumping oil with injection wells is that, on the one hand, oil production must be maintained high, and on the other hand, a well with high oil production must be irrigated prematurely and subsequently reduce the phase permeability of oil. Most of the oil fields in the Republic of Azerbaijan are in the final stages of development. As a result, it is important to increase the efficiency of the development of complex oil fields by reducing the volume of associated water and increasing oil production from partially irrigated formations. The effectiveness of isolating water-washed areas with different compositions is ambiguous. Using a 10% solution of liquid glass and hydrochloric acid as the base material, it is possible to prepare an elastic buffer material to strengthen the wellbore area. It is also possible to create a gel with adjustable setting time by adding a certain amount of a third component to the initial base mixture. Preliminary studies with the added third reagents have shown that an elastic binding composite can be formed by adding urea, laprol and chromium salts to the liquid glass and hydrochloric acid solution. In subsequent studies, 0.1 to 10% Na2SiO3 and 10% HCl solution; Viscosity was measured by adding CO(NH2)2, CrCl3, KMS and Laprol at 0.5 and 1% by mass. Keywords: related water, watering rate, gel, liquid glass, urea, laprol, chromium salts, hydrochloric acid

Publisher

Education Support and Investment Fund NGO

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3