Gene Silencing RNAi Technology: Uses in Plants

Author:

Kaya Çağlar1ORCID,Sarıyer Tolga1ORCID

Affiliation:

1. Çanakkale Onsekiz Mart University / Türkiye

Abstract

Ensuring sustainable food production in national and global area depends on the determination of plant species and varieties that can survive under the influence of various stress factors that may occur due to global climate changes and other factors that adversely limit growth and development, and depends on the protection and development of existing ones. It is important to develop new plant varieties that are resistant to abiotic stress factors that have occurred as a result of global climate changes. At this point, modern biotechnological methods have been widely needed in plant breeding in recent years. One of these techniques is RNAi technology. The mechanism of RNA interference (RNAi) is defined as post-transcriptional gene silencing or regulation of gene expression, resulting in the degradation of mRNA chain, which is the complement of double-stranded RNA (dsRNA) entering the cell. RNA interference begins when double-stranded RNA is cut into small inhibitory RNAs (siRNA) by an RNase III enzyme called as Dicer. These siRNAs then bind to the RNA-inducing silencing complex (RISC) which is a multiprotein-RNA nuclease complex. RISC uses siRNAs to find complementary mRNA and cuts the target mRNA endonucleolytically. The resulting decrease in specific mRNA leads to a decrease in available protein(s). Post transcriptional gene silencing, RNA interference and other forms of RNA silencing have been observed particularly in plants. In recent years, RNAi studies, which are among the leading topics in the global area, have shown that non-coding RNAs in plants play a role in the control of tissue differentiation and development, signal transmission, interaction with phytohormones, abiotic (drought, salinity, etc.) and environmental factors such as biotic stress. In this review paper, the basics of RNAi mechanism and the usage of RNAi in plants are explained.

Publisher

Rating Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3