Identification of wood defect using pattern recognition technique

Author:

Chun Teo Hong,Hashim Ummi Raba'ah,Ahmad Sabrina,Salahuddin Lizawati,Choon Ngo Hea,Kanchymalay Kasturi,Ismail Nur Haslinda

Abstract

This study proposed a classification model for timber defect classification based on an artificial neural network (ANN). Besides that, the research also focuses on determining the appropriate parameters for the neural network model in optimizing the defect identification performance, such as the number of hidden layers nodes and the number of epochs in the neural network. The neural network's performance is compared with other standard classifiers such as Naïve Bayes, K-Nearest Neighbours, and J48 Decision Tree in finding their significant differences across the multiple timber species. The classifier's performance is measured based on the F-measure due to the imbalanced dataset of the timber species. The experimental results show that the proposed classification model based on the neural network outperforms the other standard classifiers in detecting many types of defects across multiple timber species with an F-measure of 84.01%. This research demonstrates that ANN can accurately classify the defects across multiple species while defining appropriate parameters (hidden layers and epochs) for the neural network model in optimizing defect identification performance.

Publisher

Universitas Ahmad Dahlan, Kampus 3

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3