Ensemble deep models for covid-19 pandemic classification using chest x-ray images via different fusion techniques

Author:

Menshawy Lamiaa,Eid Ahmad H,Abdel-Kader Rehab F

Abstract

A pandemic epidemic called the coronavirus (COVID-19) has already afflicted people all across the world. Radiologists can visually detect coronavirus infection using a chest X-ray. This study examines two methods for categorizing COVID-19 patients based on chest x-rays: pure deep learning and traditional machine learning. In the first model, three deep learning classifiers' decisions are combined using two distinct decision fusion strategies (majority voting and Bayes optimal). To enhance classification performance, the second model merges the ideas of decision and feature fusion. Using the fusion procedure, feature vectors from deep learning models generate a feature set. The classification metrics of conventional machine learning classifiers were then optimized using a voting classifier. The first proposed model performs better than the second model when it concerns diagnosing binary and multiclass classification. The first model obtains an AUC of 0.998 for multi-class classification and 0.9755 for binary classification. The second model obtains a binary classification AUC of 0.9563 and a multiclass classification AUC of 0.968. The suggested models perform better than both the standard learners and state-of-the-art and state-of-the-art methods.

Publisher

Universitas Ahmad Dahlan

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced COVID-19 Classification Using Ensemble Meta-Algorithms on Chest X-ray Images;Earth and Environmental Sciences Library;2024

2. Comparing Convolutional Neural Networks for Covid-19 Detection in Chest X-Ray Images;2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3