A novel hybrid archimedes optimization algorithm for energy-efficient hybrid flow shop scheduling

Author:

Utama Dana Marsetiya,Salima Ayu An Putri,Widodo Dian Setiya

Abstract

The manufacturing sector consumes most of the global energy and had been in focus since the outbreak of the energy crisis. One of the proposed strategies to overcome this problem is to implement appropriate scheduling, such as Hybrid Flow Shop Scheduling. Therefore, this study aims to create a Hybrid Archimedes Optimization Algorithm (HAOA) for solving the Energy-Efficient Hybrid Flow Shop Scheduling Problem (EEHFSP). It is hoped that this helps to provide new insights into advanced HAOA methods for resolving the EEHFSP as the algorithm has the potential to be a more efficient alternative. In this study, three stages of EEHFSP were considered in the problem as well as a sequence-dependent setup and removal times in the second stage. Experiments with three population variations and iterations were presented for testing the effect of HAOA parameters on energy consumption. Furthermore, ten job variations are also presented to evaluate the performance of the HAOA algorithm and the results showed that HAOA iteration and the population did not affect the removal and processing of energy consumption, but impacted that of setup and idle. The comparison of these ten cases revealed that the proposed HAOA produced the best total energy consumption (TEC) when compared to the other algorithms.

Publisher

Universitas Ahmad Dahlan

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3