Author:
Harun Nor Hazlyna,Abu Bakar Juhaida,Hambali Hamirulaini’,Khair Nurnadia M,Mashor M.Y.,Hassan R.
Abstract
Segmentation is the major area of interest in the field of image processing stage. In an automatic diagnosis of acute leukemia disease, the crucial process is to achieve the accurate segmentation of acute leukemia blood image. Generally, there are three requirements of image segmentation for medical purposes, namely; accuracy, robustness and effectiveness which have received considerable critical attention. As such, we propose a new (modified) dark contrast enhancement technique to enhance and automatically segment the acute leukemic cells. Subsequently, we used a fusion 7 × 7 median filter as well as the seeded region growing area extraction (SRGAE) algorithm to minimise the salt-and-pepper noise, apart from preserving the post-segmentation edge. As per the outcomes, the accuracy, sensitivity, and specificity of this method were 91.02%, 83.68%, and 91.57% respectively.
Funder
Universiti Utara Malaysia (UUM)
Publisher
Universitas Ahmad Dahlan, Kampus 3
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献