Flatten-T Swish: a thresholded ReLU-Swish-like activation function for deep learning

Author:

Chieng Hock Hung,Wahid Noorhaniza,Pauline Ong,Perla Sai Raj Kishore

Abstract

Activation functions are essential for deep learning methods to learn and perform complex tasks such as image classification. Rectified Linear Unit (ReLU) has been widely used and become the default activation function across the deep learning community since 2012. Although ReLU has been popular, however, the hard zero property of the ReLU has heavily hindering the negative values from propagating through the network. Consequently, the deep neural network has not been benefited from the negative representations. In this work, an activation function called Flatten-T Swish (FTS) that leverage the benefit of the negative values is proposed. To verify its performance, this study evaluates FTS with ReLU and several recent activation functions. Each activation function is trained using MNIST dataset on five different deep fully connected neural networks (DFNNs) with depth vary from five to eight layers. For a fair evaluation, all DFNNs are using the same configuration settings. Based on the experimental results, FTS with a threshold value, T=-0.20 has the best overall performance. As compared with ReLU, FTS (T=-0.20) improves MNIST classification accuracy by 0.13%, 0.70%, 0.67%, 1.07% and 1.15% on wider 5 layers, slimmer 5 layers, 6 layers, 7 layers and 8 layers DFNNs respectively. Apart from this, the study also noticed that FTS converges twice as fast as ReLU. Although there are other existing activation functions are also evaluated, this study elects ReLU as the baseline activation function.

Funder

Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Postgraduate Research Grant (GPPS) under Vot U817 and Universiti Tun Hussein Onn Malaysia (UTHM)

Publisher

Universitas Ahmad Dahlan, Kampus 3

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Optimization for Sparse Neural Networks With Trainable Activation Functions;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

2. Malaria Parasite Detection in Microscopic Blood Smear Images Using Deep Learning Techniques;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. An academic recommender system on large citation data based on clustering, graph modeling and deep learning;Knowledge and Information Systems;2024-04-18

4. modSwish: a new activation function for neural network;Evolutionary Intelligence;2024-02-07

5. Activation Function Conundrums in the Modern Machine Learning Paradigm;2023 International Conference on Computer and Applications (ICCA);2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3