K-means clustering based filter feature selection on high dimensional data

Author:

Ismi Dewi Pramudi,Panchoo Shireen,Murinto Murinto

Abstract

With hundreds or thousands of features in high dimensional data, computational workload is challenging. In classification process, features which do not contribute significantly to prediction of classes, add to the computational workload. Therefore the aim of this paper is to use feature selection to decrease the computation load by reducing the size of high dimensional data. Selecting subsets of features which represent all features were used. Hence the process is two-fold; discarding irrelevant data and choosing one feature that representing a number of redundant features. There have been many studies regarding feature selection, for example backward feature selection and forward feature selection. In this study, a k-means clustering based feature selection is proposed. It is assumed that redundant features are located in the same cluster, whereas irrelevant features do not belong to any clusters. In this research, two different high dimensional datasets are used: 1) the Human Activity Recognition Using Smartphones (HAR) Dataset, containing 7352 data points each of 561 features and 2) the National Classification of Economic Activities Dataset, which contains 1080 data points each of 857 features. Both datasets provide class label information of each data point. Our experiment shows that k-means clustering based feature selection can be performed to produce subset of features. The latter returns more than 80% accuracy of classification result.

Publisher

Universitas Ahmad Dahlan, Kampus 3

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Class-incremental Learning for Time Series: Benchmark and Evaluation;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. An ensemble maximal feature subset selection for smartphone based human activity recognition;Journal of Network and Computer Applications;2024-06

3. Mapping of crime prone areas in Batubara districts using the k-means method;AIP Conference Proceedings;2024

4. Human Activity Recognition with Smartphone Sensors Using RNN;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

5. Enhancing the accuracy of electroencephalogram-based emotion recognition through Long Short-Term Memory recurrent deep neural networks;Frontiers in Human Neuroscience;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3