Bargaining and Strategic Voting on Appellate Courts

Author:

Parameswaran Giri,Cameron Charles M.,Kornhauser Lewis A.

Publisher

Elsevier BV

Reference41 articles.

1. To see this, note that if M = M ? {i} where i / ? M , then it must be that judge i is exactly indifferent between joining the majority coalition or not; otherwise, i would have a strictly improving unilateral deviation. This indifference is non-generic and requires an exact alignment of the case, the equilibrium policies chosen by the respective coalitions, and the salience parameter ?;Note by Lemma 2 that M d (z) ? M ? M . WLOG, suppose d = 1. Then, by part 1 of Assumption 1, ?(M ) ? ?(M \ {j}) ? ?(M ) for every j ? M \ M , since M ? M \ {j}. Moreover, for all j ? M \ M , ?(M ) ? ?(M ) ? z < x j . Now, since M is a Nash equilibrium coalition, then u P (?(M ), x j ) + ?l(z, x j ) ? u P (?(M \ {j}), x j ) for each j ? M \M , and given the above ordering

2. Work:

3. Since the deviation from the deviation is profitable;Claudio Scott;we have: u P (?(M \ C), x k ) > u P (?(M , x k ) + ?l(z, x k ) ? u P (?(M \ {k}, x k ), where the second inequality follows from the fact that M is an equilibrium coalition. Hence u P (?(M \ C), x k ) > u P (?(M \ {k}), x k ), which cannot be since ?(M \ C) ? ?(M \ {k}) < x k . Hence, the deviation is stable. Proof of Lemma 4. Let (d, M ) be an adjudication (Nash) equilibrium, and suppose M is not connected. WLOG, suppose d = 1, so that, by Lemma 2, M 1 (z) ? M . Since M 1 is a connected coalition and M is disconnected, M must contain members of M 0 (z). Then there References Baker,2012

4. A Bargaining Model of Collective Choice;Jeffrey S Banks;The American Political Science Review,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Case selection and Supreme Court pivots;Political Science Research and Methods;2020-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3