A Novel Machine Learning-Based Model for Predicting of Transient Fatigue Lifetime in Piston Aluminum Alloys
Author:
Publisher
Elsevier BV
Reference23 articles.
1. Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature;M Wang;Materials Science and Engineering: A,2017
2. Deformation mechanism and fatigue life of an Al-12Si alloy at different temperatures and strain rates;M Wang;International Journal of Fatigue,2019
3. High-temperature low-cycle fatigue behaviour of a cast Al-12Si-CuNiMg alloy;Q Zhang;Fatigue & Fracture of Engineering Materials & Structures,2013
4. Performance comparison of incremental kmeans and incremental dbscan algorithms;S Chakraborty;International Journal of Computer Applications,2011
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explainable artificial intelligence modeling of internal arc in a medium voltage switchgear based on different CFD simulations;Heliyon;2024-04
2. Interpretation of fatigue lifetime prediction by machine learning modeling in piston aluminum alloys under different manufacturing and loading conditions;Frattura ed Integrità Strutturale;2024-03-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3